genetics

Jonathan Kipnis, the researcher who discovered that lymphatic vessels are important mediators of the underlying molecular mechanism of multiple sclerosis (MS), has received the prestigious Director’s Pioneer Award from the National Institutes of Health (NIH). This prize recognizes researchers who have made important contributions to the development of new…

A new U.S. law designed to update and expand data on Americans with multiple sclerosis (MS) and similar illnesses will significantly advance disease research, said the National Multiple Sclerosis Society (NMSS). The spending bill, signed into law Sept. 28 by President Trump, provides $5 million to the Centers for…

The levels of three small, regulatory RNA molecules — long non-coding RNAs — are deregulated in blood samples of patients with relapsing-remitting multiple sclerosis (RRMS), a study reports. The long non-coding RNAs are involved in the regulation of the natural immune response and DNA-damage response, supporting the theory that these…

Vitamin D3 insufficiency increases multiple sclerosis (MS) susceptibility in a gene and sex-dependent manner, a mouse study suggests. The study with that finding, “Sex-Specific Gene-by-Vitamin D Interactions Regulate Susceptibility to Central Nervous System Autoimmunity,” by researchers at the University of Vermont, was published in the journal Frontiers in…

A better understanding of the processes behind a continual and healthy renewal of myelin — the fatty, protective substance wrapping nerve cell fibers — may now exist. Researchers identified an enzyme, called PRMT5, that they believe regulates the number of myelin-producing cells in the brain and spinal cord. Their discovery…

I am a sensitive individual by nature. Good, bad, or insignificant, that is part of my genetic makeup. I cry when the dog gets hurt in the movie, at every episode of “This Is Us,” and every time I hear “O Holy Night” at Christmas Eve services. While sometimes endearing,…

Researchers have found a link between variations in two genes that control our 24-hour biological clock and the risk of a person developing multiple sclerosis. The study, “Association of circadian rhythm genes ARNTL/BMAL1 and CLOCK with multiple sclerosis,” was published in the journal PLOS ONE. Scientists know MS…

Researchers have taken the first steps towards the development of a gene therapy for multiple sclerosis — a treatment that boosted anti-inflammatory immune processes and reversed severe paralysis in mouse models of the disease. The University of Florida Health research team said it was optimistic that the therapy can work…

A new study highlights a crucial role for the enzyme protein tyrosine phosphatase N2 in the development of early immune T-cells, and suggests that decreased levels of this enzyme can lead to the production of subsets of T-cells that contribute to the development of autoimmune diseases such as multiple sclerosis. T-cells, which are a type of immune cells that fight infection, are composed of multiple subsets that have different roles in immunity. Researchers at Monash University set out to characterize the role of PTPN2 in early T-cell development and in the development of T-cell subsets αβ TCR and γδ TCR. To do this, researchers deleted the gene coding for PTPN2 and looked at the resulting T-cell population. Results demonstrated that the deletion of PTPN2 led to the production of γδ T-cells with pro-inflammatory properties that have been associated with many autoimmune diseases by inhibiting certain pathways that regulate proper T-cell development. “This is an important advance in our understanding of critical checkpoints in T-cell development,” Tony Tiganis, principal research fellow in the Department of Biochemistry and Molecular Biology at Monash University in Australia, said in a press release. “It helps decide whether the progenitors go on to become T-cells or something else; if they become one type of T-cell or another type.” Interestingly, there are already drugs that target some of the pathways that PTPN2 regulates, which could lead to the use of existing drugs to treat some of these autoimmune diseases, including MS. “Understanding the mechanisms that govern early T-cell development and how these are altered in human disease may ultimately afford opportunities for novel treatments. This is very exciting,” said Florian Wiede, a post-doctoral candidate at Monash and first author of the study.

A gene mutation may explain the uncontrolled, inflammatory immune response seen in autoimmune and chronic inflammatory diseases like multiple sclerosis, scientists at the Research Institute of the McGill University Health Centre (RI-MUHC) report. It's a discovery that, they said, appears to be "a big step in the right direction." According to the study, published in the journal Science Immunology, alterations in the FOXP3 gene affect specific immune cells called regulatory T-cells, or Tregs. Those mutations hamper Tregs in performing a crucial regulatory role, leading to a loss of control over the immune system’s response to a perceived threat. “We discovered that this mutation in the FOXP3 gene affects the Treg cell’s ability to dampen the immune response, which results in the immune system overreacting and causing inflammation,” Ciriaco Piccirillo, the study's lead author and an immunologist in the Infectious Diseases and Immunity, Global Health Program, at the RI-MUHC, said in a news release. Tregs are known to be the immune system players responsible for keeping other immune cells under control, preventing them from attacking the host’s own tissues, while maintaining a proper immune response against harmful agents. The normal activity of Treg cells is essential for preventing excessive immune reactions. The FOXP3 gene is also well-known, and documented, to be essential for proper Treg cell function. However, the mechanisms by which FOXP3 gene is involved in Treg cell activities are still poorly understood. In the study, “Suppression by human FOXP3+ regulatory T cells requires FOXP3-TIP60 interactions,” the research team — in collaboration with researchers at University of Pennsylvania, University of Washington School of Medicine, and Teikyo University School of Medicine in Japan — evaluated the impact of a FOXP3 gene mutation in autoimmunity response. Taking advantage of cutting-edge technology, the team studied samples from two patients carrying a common FOXP3 gene mutation, which caused a genetic immune disorder called IPEX. Interestingly, the researchers found that this genetic variant did not reduce the number of Treg cells or the levels of FOXP3 protein. Instead, the mutation altered the way Tregs could suppress other immune cells to prevent overactivation. “What was unique about this case of IPEX was that the patient’s Treg cells were fully functional apart from one crucial element: its ability to shut down the inflammatory response,” said Piccirillo. “Understanding this specific mutation has allowed us to shed light on how many milder forms of chronic inflammatory diseases or autoimmune diseases could be linked to alterations in FOXP3 functions,” added Khalid Bin Dhuban, the study's first author and a postdoctoral fellow in Piccirillo’s laboratory. The team developed a compound capable of restoring Treg cells' ability to control the immune system in the presence of this specific FOXP3 gene mutation. Tested in animal models of colitis and arthritis, two chronic inflammatory diseases, the compound reduced inflammation and restored normal Treg function. Researchers now plan to develop similar drugs that may be of use in other diseases where Treg cells are known to be defective, including multiple sclerosis, type 1 diabetes, and lupus. "Currently, we have to shut down the whole immune system with aggressive suppressive therapies in various autoimmune and inflammatory diseases," said Piccirillo. “Our goal is to increase the activity of these Treg cells in certain settings, such as autoimmune diseases, but we want to turn it down in other settings, such as cancer.” “This discovery gives us key insights on how Treg cells are born and how they can be regulated,” Piccirillo added. “With this discovery, we are taking a big step in the right direction.”

A variation in the NLRP1 gene is associated with multiple sclerosis that runs in families, Slovenian researchers report. Their study, “Identification of rare genetic variation of NLRP1 gene in familial multiple sclerosis,” was published in the journal Scientific Reports. The research was led by Dr. Borut Peterlin of Ljubljana University Medical Center's Clinical Institute of Medical Genetics. Scientists believe MS arises from a combination of a person's genetic background and the environment. Although previous studies have suggested that genes are behind MS that runs in families, researchers had yet to confirm that hypothesis. The Slovenian team wanted to identify any genes that were at play in both the MS and malignant melanoma that two siblings had. Although disease surveys indicate the two conditions can occur together, scientists had been unable to identify a shared cause for the two conditions. Interestingly, research has shown a link between a person's susceptibility to MM and a mutation of the NLRP1 gene. And recent studies have indicated that NLRP1 plays a role in the development of MM. The Slovenian team decided to evaluate the association between an NLRP1 mutation and multiple sclerosis in two groups. One consisted of 38 people with MS whose disease ran in the family. The other was 44 people with MS whose disease did not run in their family. Researchers used genomic, molecular biology and immunology measurements to decide whether there was a link between the mutation and MS. They found a connection between the mutation and MS that runs in families. The mutation affects the function of the protein the gene generates — a protein known to be involved in inflammatory processes. Researchers also found other NLRP1 mutations in patients with and without a family history of MS that they believe could be involved in the development of the disease. In addition, the team found evidence of a connection between MS associated with NLRP1 mutations and the development of MM. That evidence involved immune responses to the two conditions. Stimulating the production of immune-system components known as peripheral blood mononuclear cells, or PBMCs, triggered immune responses in MS patients with NLRP1 mutations. The responses included increased production of the pro-inflammatory cytokine IL-1β. Higher levels of that protein have been found in MM tissue. PBMCs include such immune cells as lymphocytes, monocytes, and macrophages. "IL-1β has been implicated in a variety of inflammatory and neurodegenerative processes occurring in MS,” the researchers wrote. Overall, the findings demonstrated an association between MS running in families and MM, they said. And the genetic link between the two may be the NLRP1 gene mutation, they added. The team said scientists might be able to develop a treatment for MS by finding a way to lower the increased production of IL-1β that NLRP1 mutations trigger.

The expression by immune B-cells of a protein called T-bet is crucial to promoting production of autoantibodies that recognize and destroy the tissues of one’s own body, finds a new study by researchers at National Jewish Health in Denver. The study, “B cells expressing the transcription factor T-bet drive lupus-like autoimmunity,”…