Tregs

Lilly, Nektar Partner to Develop T-Cell Stimulator NKTR-358 for MS, Autoimmune Disorders

Eli Lilly and Nektar Therapeutics have established a development and commercial agreement for the investigational T-cell stimulator therapy NKTR-358 for the treatment of autoimmune disorders, including multiple sclerosis. NKTR-358, discovered and initially developed by Nektar, has the potential to modulate immune system responses to re-establish an immune balance in patients with autoimmune disorders. The treatment targets the interleukin 2 receptor complex (IL-2R) that is expressed on the surface of a subset of immune cells called regulatory T-cells, or Tregs. NKTR-358 activity stimulates the proliferation of Tregs, which in turn will regulate the activity of other immune cells that are uncontrolled and are responsible for the underlying mechanisms of autoimmune disorders. "We look forward to working with Nektar to study this novel approach to treating a number of autoimmune conditions," Thomas F. Bumol, PhD, senior vice president of biotechnology and immunology research at Eli Lilly, said in a press release. "NKTR-358 is an exciting addition to our immunology portfolio and reinforces Lilly's commitment to sustain a flow of innovative medicines in our pipeline." Bumol added. Under the agreement, Lilly and Nektar will continue to jointly develop NKTR-358. Nektar will be responsible for completing the ongoing Phase 1 clinical study; and Phase 2 clinical development costs will be shared by the two companies, with Lilly covering 75 percent of the costs and Nektar the remaining 25 percent. Nektar will have the option to take part of the Phase 3 development of NKTR-358 on an indication-by-indication basis. "We are very pleased to enter into this collaboration with Lilly as they have strong expertise in immunology and a successful track record in bringing novel therapies to market," said Howard W. Robin, president and CEO of Nektar. "Importantly, this agreement enables the broad development of NKTR-358 in multiple autoimmune conditions in order to achieve its full potential as a first-in-class resolution therapeutic." Based on the announced agreement, Lilly will pay an initial amount of $150 million to Nektar, which will also be eligible to receive up to $250 million from additional development and regulatory milestones. In the future, Nektar may also receive royalties from the product depending on its investment in NKTR-358ā€™s Phase 3 development and future product sales. Lilly will cover all costs of global marketing of NKTR-358, and Nektar will have an option to co-promote the drug in the United States.

Nektar Therapeutics Starts Phase 1 Trial of NKTR-358 for Autoimmune Diseases

Nektar TherapeuticsĀ has started a Phase 1 clinical trial of its biologic therapy NKTR-358 forĀ inflammatory disorders and autoimmune diseases like multiple sclerosis. NKTR-358 is a first-in-class regulatory T-cell stimulator designed to correct the immune system dysfunction associated with these disorders. ItĀ targets regulatory T-cells, or Tregs. Other immunosuppressant therapies suppress the…

#ACTRIMS2017 – Some Fatty Acids in Diet Help, Others Hurt Immune System, Study Reports

Short-chain dietary fatty acids, such as propionate, drive the production of regulatory immune T-cells in patients with multiple sclerosis (MS), while long-chain acids promote T-cells that are involved in inflammatory processes. Since the beneficial fatty acids are safe and can be obtained as over-the-counter dietary supplements, researchers suggest they could…

RRMS Drug Works by Shifting Anti-Inflammatory Immune Profile, Study Shows

Researchers have found that changes in the compositionĀ of immune molecules ā€” specifically, a shift to more anti-inflammatory cytokines and regulatory T-cells (Tregs) ā€” likely account for the efficiencyĀ of alemtuzumab (Lemtrada) as a treatment for relapsing-remitting multiple sclerosis (RRMS). The study, titledĀ “Alemtuzumab long-term immunologic effect: Treg suppressor function…

Multiple Sclerosis-like Disorder Blocked in Mice Study

Researchers demonstrated a processĀ that prevented an induced autoimmune disease from taking hold in the central nervous system of mice, and think it has the potential of being translated into a multiple sclerosis (MS) therapy. The study detailing the method and its promising results is entitled ā€œInfusion of Sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate-Conjugated MOG35ā€“55-Coupled…

MS Patients on Salt-heavy Diets Risk Inflammation

Findings from two studies, recently published in theĀ Journal of Clinical Investigation, indicate that high levels of salt alter the stability of the immune system and make it more susceptible to inflammation. The studies, which were led by Dr. David Hafler from Yale University and Dr. Dominik…