Author Archives: Joana Carvalho

Researchers Succeed at Generating Oligodendrocytes, Key to Myelin Renewal, in Tissue Created in Lab

Researchers at Case Western Reserve University School of Medicine have developed a cutting-edge laboratory technique able to turn human stem cells – special cells able to grow into any type of cell in the body – into brain-like tissues in a culture dish. They intend to use their tool to study how myelination – the deposition of myelin around nerve cells – occurs in the central nervous system, and how diseases such as multiple sclerosis (MS) impair this process. The experimental protocol to grow these structures outside an organis) is described in the study, "Induction of myelinating oligodendrocytes in human cortical spheroids," published in the journal Nature Methods. These structures, called “oligocortical spheroids,” are small spheres that contain all the major cell types usually found in the human brain, including oligodendrocytes — cells that produce myelin, which is the fatty substance that insulates nerve fibers. Previous cerebral organoid techniques failed to include oligodendrocytes. “We have taken the organoid system and added the third major cell type in the central nervous system — oligodendrocytes — and now have a more accurate representation of cellular interactions that occur during human brain development,” Paul Tesar, PhD, associate professor of genetics and genome sciences at Case Western's medical school and the study's senior author, said in a press release. Oligodendrocytes are essential to good brain health. Without these cells, myelin production is hampered and nerve cells cannot communicate effectively, and eventually they start to deteriorate. This is the starting point for many neurological disorders caused by myelin defects, including MS and rare pediatric genetic disorders like Gaucher disease. Using this new organoid system and these myelin-producing cells, researchers intend to study the process of myelination — how it occurs in normal circumstances and how neurodegenerative diseases disrupt this process. “This is a powerful platform to understand human development and neurological disease,” Tesar said. “Using stem cell technology we can generate nearly unlimited quantities of human brain-like tissue in the lab. Our method creates a ‘mini-cortex,’ containing neurons, astrocytes, and now oligodendrocytes producing myelin. This is a major step toward unlocking stages of human brain development that previously were inaccessible.” Researchers not only demonstrated that they were capable of generating mature oligodendrocytes derived from human stem cells in vitro, but they also showed these cells were able to exert their function and produce myelin starting at week 20 in a culture dish. Their improved organoid system could also be used to test the effectiveness of potential myelin-enhancing treatments. “These organoids provide a way to predict the safety and efficacy of new myelin therapeutics on human brain-like tissue in the laboratory prior to clinical testing in humans,” said Mayur Madhavan, PhD, co-first author on the study. To prove this point, researchers treated organoids with promyelinating compounds known to enhance myelin production in mice, and measured the rate and extent of oligodendrocyte generation and myelination. Under normal conditions, adding promyelinating drugs to cultured organoids increased the rate and extent of oligodendrocyte generation and myelin production, the team reported. But results differed in important ways using diseased organoids.  Specifically, treating organoids generated from patients with Pelizaeus-Merzbacher disease — a fatal genetic myelin disorder — brought an in vitro recapitulation of the patients' symptoms. “Pelizaeus-Merzbacher disease has been a complicated disorder to study due to the many different mutations that can cause it and the inaccessibility of patient brain tissue,” said Zachary Nevin, PhD, co-first author on the study. “But these new organoids allow us to directly study brain-like tissue from many patients simultaneously and test potential therapies.” Altogether, these findings demonstrate that oligocortical spheroids could be a versatile in vitro system to study how myelination occurs in the central nervous system, and a possible model for testing new therapies for neurodegenerative disorders. “Our method enables generation of human brain tissue in the laboratory from any patient,” Tesar said. “More broadly, it can accurately recapitulate how the human nervous system is built and identify what goes wrong in certain neurological conditions.”

Cladribine Added to Interferon-beta Seen to Lower Relapses in Active MS, But Safety Questioned

Cladribine tablets added to interferon-beta treatment significantly reduced the probability of relapses over 96 weeks in people with active relapsing multiple sclerosis , a Phase 2 clinical trial found. But a troubling diminishment in key immune cells was also seen in treated patients. Relapsing-remitting MS is marked by periods of flares caused by inflammatory attacks, followed by periods of partial or complete recovery . A majority --about 65 percent -- go on to develop secondary progressive MS. Despite the growing number of treatment options — including disease-modifying therapies — for these MS patients, efforts continue into better ways to lower relapse frequency and slow disease progression. Researchers tested the safety and efficacy of cladribine tablets as an add-on therapy in patients continuing to experience active relapses while under interferon-beta treatment. Cladribine is an oral medication that works by selectively targeting and reducing the number of immune cells involved in the inflammatory attacks occurring in active MS. It was developed by EMD Serono (Merck KGaA outside the U.S. and Canada) and approved in the European Union using the brand name Mavenclad (it is not approved in the U.S. for MS). Interferon-beta works by balancing pro- and anti-inflammatory signals, reducing the number of immune cells and promoting the survival of nerve cells. Interferon-beta therapies are marketed under several brand names; in the study, researchers analyzed patients using Rebif (marketed by EMD Serono), Avonex (by Biogen), and Betaseron/Betaferon (by Bayer). The 96-week, randomized, double-blind, Phase 2b trial called ONWARD enrolled a total of 172 patients with active relapsing MS, who were randomly divided into two groups: those given cladribine tablets together with interferon-beta, and those that received a placebo and interferon-beta. Results showed those taking cladribine tablets together with interferon-beta had 63% lower likelihood of a relapse compared to those given an add-on placebo. Add-on cladribine treatment also reduced most measures of disease activity as assessed by magnetic resonance imaging (MRI) — namely, the number of new brain and spinal cord lesions. However, almost half of patients in this treatment group developed lymphopenia, a condition where the levels of lymphocytes (important immune white blood cells) in the blood are abnormally low. None in the control group developed the condition. Other reported side effects, including other serious adverse side effects, were identical in the two groups. Altogether, the findings indicate that a cladribine and interferon-beta combination can successfully lower the probability of relapses over the course of 96 weeks, but also increase a person's chances of lymphopenia.

Dancing Doodle

Did you know some of the news and columns on Multiple Sclerosis News Today are recorded and available for listening on SoundCloud? These audio news stories give our readers an alternative option for accessing information important for them.

Listen Here

Video