genetics

Females of certain species — like humans and mice — have a known ability to produce more of the gene Kdm6a than males because it’s located on the X chromosome, of which females have two. Kdm6a is also quite active in immune system T-cells, a study found, and silencing it in a mice model…

An amino acid change to phenylalanine, and a specific class I HLA gene variant are associated with greater risk for multiple sclerosis (MS), according to a study in Japanese patients. Researchers also identified an HLA variant, or mutation, associated with neuromyelitis optica spectrum disorder (NMOSD), an autoimmune condition…

Scientists are zeroing in on mutations in a few genes that appear to be major risk factors for developing multiple sclerosis (MS). The results of their research suggest there are common biological pathways that cause the disease. The study, “Exome sequencing in multiple sclerosis families identifies 12…

Cellular senescence — the process of aging at the cellular level — may play a role in the development of primary progressive multiple sclerosis (PPMS) by limiting the ability of myelin-producing cells (oligodendrocytes) to renew and mature. The study with that finding, “Cellular senescence in progenitor…

Schwann cells surrounding neurons protect the degeneration of nerves by blocking thrombin, a blood-clotting protein that can also damage nerves, according to a new study. These findings may aid in the further understanding of genetic and molecular mechanisms behind conditions such as multiple sclerosis (MS). Results of the study, “Glial cells…

A tiny molecule known as microRNA-142 plays a key role in the prevention of autoimmune responses through immune cells called regulatory T-cells (Tregs), according to a new study of  mice. These findings could enable new strategies to treat multiple sclerosis (MS) and other autoimmune diseases, the scientists said. The…

The RhoE protein has been identified as being important for axons’  myelination and extension in the central nervous system, two processes that go awry in diseases like multiple sclerosis (MS). The findings stem from Pilar Madrigal’s doctoral thesis, “Role of the small GTPase RhoE in myelination and axonal tracts development.”…

Genetic variants that enhance the activity of the NLRP3 inflammasome or the interleukin-1 beta cytokine are linked to higher severity and progression of multiple sclerosis, a study suggests. Previous studies with mouse models of MS have shown that a complex of innate immune system receptors and sensors, known as the inflammasome, is likely a player promoting the immune system’s attack on the central nervous system in MS and, consequently, the loss of myelin. Follow-up studies showed that people carrying mutations that enhance the function of the NLRP3 inflammasome — one of the three components of the inflammasome complex — had a worse prognosis, once again supporting the role of the inflammasome in MS. Once activated, the inflammasome triggers an enzyme called caspase-1 that promotes the production of two very powerful proinflammatory cytokines called interleukin (IL)-1 beta and IL-18. To further evaluate the role of the inflammasome in MS, a team led by researchers at the Universidade de Sao Paulo in Brazil analyzed the genetic sequence of five inflammasome genes — NLRP1, NLRP3, NLRC4, IL-1 beta, and IL-18 — in blood samples retrieved from 264 patients diagnosed with MS or other demyelinating diseases. They also analyzed 233 healthy individuals used as controls. The team specifically looked at eight variations in certain nucleotides (the building blocks of DNA), called single nucleotide polymorphisms (SNPs). Previous studies reported a link between SNPs in inflammasome-related genes and certain forms of MS. Results showed that SNPs associated with low serum levels of IL-18 were significantly less frequent in MS patients than in controls. In contrast, variants that enhance the function of NLRP3 and IL-1 beta were associated with severity and progression of MS, as measured by the Expanded Disability Status Scale. These results suggest that the "activation of NLRP3 inflammasome could represent a risk factor for MS clinical presentation,” the researchers wrote. A particular variant in the NLRC4 gene was less frequent in patients whose disease progressed rapidly compared with those who had a slower disease, an intriguing observation, according to researchers, suggestive of a “protection effect of this variant against a bad prognosis.” Carriers of this variant also responded better to treatment with interferon-beta. Regarding MS type, the genetic variant that promotes the function of the IL-1 beta gene was significantly more frequent in progressive forms of MS than in relapsing-remitting MS, strengthening once again the negative effects of IL-1 beta in the disease. An analysis of inflammasome activity in blood monocytes, a group of immune cells, showed that the inflammasome is permanently activated in MS compared with healthy controls. "This study emphasizes that a constitutive activation of NLRP3 inflammasome, principally through IL-1 beta production, represents a risk factor for both the development of MS and the progression to severe forms of the disease. On the other hand, low IL-18 production and/or NLRC4 activation were beneficial for MS patients,” the team concluded.

Australian researchers from the University of Newcastle and the Hunter Medical Research Institute (HMRI) have received funding for two projects that will study unexplored areas in multiple sclerosis (MS). The projects, investigating the role of epigenetic differences in MS severity and treatment against MS-derived fatigue, received $211,000 AUD (about $151,300…

Katerina Akassoglou, PhD, a leading neurology researcher at the Gladstone Institutes at the University of California, San Francisco (UCSF), won the 2018 Barancik Prize for Innovation in Multiple Sclerosis Research. Akassoglou will receive the award and deliver the Prize lecture at the Americas Committee for Treatment…

A genetic variant associated with an increased risk of multiple sclerosis (MS) due to its impact on certain immune system cells can also affect brain cells called astrocytes, a study shows. Reported in the study, “Enhanced astrocyte responses are driven by a genetic risk allele associated with multiple…

Blocking SARM1, a protein identified as a central mediator of nerve cell degeneration, works to prevent damage to axons — nerve cell fibers essential in cell-to-cell communication — and may be a way of treating neurodegenerative diseases like multiple sclerosis (MS), data from Disarm Therapeutics shows. Specially, genetically deleting…