research

A clinical trial funded by the National Multiple Sclerosis Society is recruiting adult patients with multiple sclerosis (MS) to test two non-pharmacological strategies to manage MS-related chronic pain. The trial (NCT03782246) will be conducted at the University of Washington, and plans to enroll about 250 participants across…

The question of how quickly to start a disease-modifying therapy (DMT) after a multiple sclerosis (MS) diagnosis is one that I frequently see when I browse online. It goes hand in hand with questions about which DMT is best to start with. There are many things to consider when…

Gilenya is linked to significantly lower annualized relapse rates in relapsing-remitting multiple sclerosis (RRMS) patients compared to Tecfidera or Aubagio, a study suggests. All three therapies showed similar effects on disability outcomes. Oral immunotherapies — including Novartis’ Gilenya, Biogen’s Tecfidera, and Sanofi Genzyme’s Aubagio — are currently standard therapies for RRMS treatment. But while these therapies are highly effective at modulating MS activity, studies comparing their efficacy on relapse and disability are missing. This is an important point for MS patients, so that if a change in oral therapies is needed (due to lack of tolerance, for example), the decision on a more suitable therapy is based on scientific evidence. To address this matter, a group of researchers used the MsBase, an international observational MS cohort study, to identify RRMS patients who had been treated with Gilenya, Tecfidera, or Aubagio for at least three months. The team compared Tecfidera versus Aubagio, Gilenya versus Aubagio, and Gilenya versus Tecfidera, specifically for the therapy’s impact on relapse activity, six-month disability worsening or improvement, and persistence of treatment. Relapse was defined as the occurrence of new symptoms or exacerbation of existing ones for a period of over 24 hours, at least 30 days after a previous relapse. Disability was assessed using the Expanded Disability Status Scale (EDSS); the six-month disability worsening or improvement were defined as an increase or a decrease by one value in EDSS. The study included 614 patients treated with Aubagio, 782 with Tecfidera, and 2,332 with Gilenya. Patients were followed over a median of 2.5 years. Patients’ characteristics at baseline differed among the three groups. Aubagio-treated patients tended to be older, with longer periods of disease, fewer relapses, and lower EDSS scores compared to the other two groups. Patients treated with Gilenya had higher EDSS and more relapses during the prior year, compared to those treated with Tecfidera. The majority of the patients had been treated with other immunotherapies prior to being given one of these three oral treatments. Results showed that Gilenya-treated patients had significantly lower annualized relapse rates than those treated with Tecfidera (0.20 versus 0.26) or Aubagio (0.18 versus 0.24), while patients taking either Tecfidera or Aubagio had a similar rate. However, during the 2.5-year period analyzed, researchers found no differences in disability accumulation or disability improvement among the three therapies. Regarding treatment persistence, Tecfidera and Aubagio were more likely to be discontinued than Gilenya. Overall, the results suggest that treatment with Gilenya may have a greater impact on relapse frequency in RRMS patients compared to Tecfidera and Aubagio, although the "effect of the three oral therapies on disability outcomes was similar during the initial 2.5 years on treatment," researchers said. “Choosing a therapy in individual patients remains a complex task that requires thorough and individualized evaluation of disease prognosis, and the corresponding risks and benefits of the increasing number of available therapies,” they concluded.

Australian researchers from the University of Newcastle and the Hunter Medical Research Institute (HMRI) have received funding for two projects that will study unexplored areas in multiple sclerosis (MS). The projects, investigating the role of epigenetic differences in MS severity and treatment against MS-derived fatigue, received $211,000 AUD (about $151,300…

Subpopulations of oligodendrocytes — cells that produce the myelin sheath that protects nerve fibers — are altered in patients with multiple sclerosis, a study shows. These findings suggest that oligodendrocyte diversity and the different functions of these subpopulations might have a greater role in the disease than previously thought. The severity of MS varies greatly, and the patient's disability level does not correlate well with the degree of myelin loss. This suggests that other factors contribute to MS severity. One such factor may be that oligodendrocytes are heterogeneous — diverse in makeup and function. For example, oligodendrocytes in mouse spinal cords are known to naturally produce longer myelin sheaths than oligodendrocytes in the mouse brain. Additionally, individual oligodendrocytes have been shown to have different molecular makeups. However, the extent of human oligodendrocyte diversity and its possible contribution to MS pathology remains unknown. Researchers from the Karolinska Institutet and the MRC Centre for Regenerative Medicine studied the differences of individual human oligodendrocytes from healthy and MS brains to assess their diversity. Specifically, the team examined oligodendrocytes from the white matter areas of post-mortem human brains both from MS and non-MS patients. The team examined the RNA content — the messenger molecule carrying instructions from DNA for the production of proteins — from individual oligodendrocytes. Researchers identified groups of RNA molecules that defined features of oligodendrocytes from healthy human white matter. Some of these groups match those that defined oligodendrocytes in healthy mice. Strikingly, some of these RNA molecules in healthy brains were under-represented in oligodendrocytes from MS brains, whereas others were more prevalent. “We found that oligodendrocytes are a diverse population of cells and that different types are likely to have different functions in the brain,” Charles ffrench-Constant, the study's co-lead author, said in a Karolinska Institutet news release written by Katarina Sternudd. These differences in oligodendrocyte RNA content may indicate different functional states of oligodendrocytes in MS lesions. “The proportions of different resident oligodendrocytes in the lesions are changed, along with their properties, suggesting that they might have important roles in MS,” said Eneritz Agirre, PhD, a study co-author. Furthermore, the researchers believe that this altered diversity in oligodendrocytes in MS may be important to understand disease progression and develop therapeutic approaches. “Understanding which types of oligodendrocytes are most beneficial in repairing myelin will be crucial for maximizing the chances of developing much-needed treatments for MS,” said Anna Williams, PhD, study co-lead author. The team concluded that the changes in different oligodendrocyte subpopulations in MS suggest "a more complex role of these cells in the pathology of the disease, but also in regeneration of new cells,” said Gonçalo Castelo-Branco, PhD, another study co-lead author.

Editor’s note: “Need to Know” is a series inspired by common forum questions and comments from readers. Have a comment or question about multiple sclerosis? Visit our forum. This week’s question is inspired by the forum topic “Can there be a connection between Epstein-Barr virus…

Endothelial cells, those lining the inside of small blood vessels, promote clearance of myelin debris — a common detrimental outcome of demyelinating diseases such as multiple sclerosis (MS) or spinal cord injury. However, in its path to clear the brain from myelin debris, endothelial cells trigger more damaging mechanisms, promoting…

Treatment with Ocrevus (ocrelizumab) has superior or comparable effectiveness and a similar safety profile to other available disease-modifying treatments (DMTs) for treating relapsing multiple sclerosis (MS), according to a new review study. The research, “Systematic review and network meta-analysis comparing ocrelizumab with other treatments for…

Initial treatment of relapsing-remitting multiple sclerosis (RRMS) with Gilenya (fingolimod), Tysabri (natalizumab), or Lemtrada (alemtuzumab) is associated with a lower risk of conversion to secondary progressive multiple sclerosis (SPMS), compared with interferon beta or Copaxone (glatiramer acetate), a study reports. Findings also showed that…

Fatigue is more prevalent among patients with progressive multiple sclerosis (MS), according to a study that surveyed patients on fatigue and factors related to it. In addition, increased fatigue severity correlated with greater physical, cognitive, and psychological impairment, although the strength of this link was largely the same…

A small molecule called Sephin1 may be able to significantly delay harm to neurons in multiple sclerosis (MS) by protecting oligodendrocytes, limiting the autoimmune response, a mouse study reports. The study, “Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis,” was published in the journal Brain. MS is thought to be caused by immune-mediated inflammation that damages the myelin — an insulating sheath around nerve cells. For this reason, current MS disease-modifying treatments focus on immune-mediated inflammation. Although these treatments moderate disease relapses, their impact on disease progression is unclear. Previous studies have demonstrated that oligodendrocytes — cells that produce myelin — are critical in protecting against neuron demyelination and axon (nerve fiber) damage. As a result, researchers have been keen to develop alternative therapeutic approaches that protect oligodendrocytes, and ultimately limit disease progression.  A signaling pathway called integrated stress response that acts as a natural defense system to protect cells has been shown to reduce the inflammatory impact on oligodendrocytes. This response is triggered by phosphorylation (a chemical reaction) of a protein called eukaryotic initiation factor 2 alpha (eIF2α), and reduces the total production of proteins, instead promoting the synthesis of protective proteins in the cells. Conversely, the integrated stress response can be cut off by dephosphorylation of eIF2α. Sephin1 was shown to inhibit the dephosphorylation of eIF2α, prolonging the protective response. In this study, researchers at the University of Chicago proposed that Sephin1, by producing this response, could protect oligodendrocytes and slow the progress of the disease. The team tested their hypothesis in a mouse model called experimental autoimmune encephalomyelitis (EAE), which is similar to MS in humans. Results showed that treatment with Sephin1 did inhibit eIF2α dephosphorylation in EAE mice, triggering a protective response against inflammation. More importantly, myelin-producing oligodendrocytes were also protected, and disease onset was significantly delayed. This correlated with diminished oligodendrocyte loss, protected neuronal axons and myelin, and prolonged integrated stress response. In addition, Sephin1 decreased the levels of inflammatory immune T-cells, and the production of inflammatory signals within the central nervous system. "By protecting oligodendrocytes and diminishing demyelination, we also reduce the generation of myelin debris,"  Brian Popko, PhD, the study's senior author, said in a press release. "The decreased exposure to myelin fragments should also limit the auto-immune response." Popko is the Jack Miller professor of neurological disorders, and director of the Center for Peripheral Neuropathy at the University of Chicago. The effects of Sephin1 were also combined with interferon-beta treatment — an anti-inflammatory first-line MS therapy. Researchers found that the combination was more effective than the therapies given separately. "Encouragingly, adding Sephin1 to the established anti-inflammatory MS drug interferon beta provided additive benefits to the mouse MS model," said study co-author Yanan Chen, PhD, a postdoctoral fellow in the Popko laboratory. The team concluded that the results "suggest that a neuroprotective treatment based on the enhancement of the integrated stress response would likely have significant therapeutic value for multiple sclerosis patients." Treatment with Sephin1, they say, "could lead to a better clinical outcome in multiple sclerosis patients as a safe neuroprotective drug, perhaps when used in combination with immune-modulatory therapies." Sephin1 has been patented and licensed to InFlectis BioScience, a French biotech company.

Relapsing-remitting multiple sclerosis (RRMS) patients on Gilenya (fingolimod) have fewer relapses and stay on treatment longer than those taking Tecfidera (dimethyl fumarate) or Aubagio (teriflunomide), according to a new study. The research, “Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis,” was published…

Katerina Akassoglou, PhD, a leading neurology researcher at the Gladstone Institutes at the University of California, San Francisco (UCSF), won the 2018 Barancik Prize for Innovation in Multiple Sclerosis Research. Akassoglou will receive the award and deliver the Prize lecture at the Americas Committee for Treatment…

Treatment with a single dose of Ocrevus (ocrelizumab) depleted a subset of immune T-cells within two weeks in patients with relapsing multiple sclerosis (MS) or primary progressive MS (PPMS), according to a study. The study, “Ocrelizumab Depletes CD20+ T Cells in Multiple Sclerosis Patients,” was published in the journal Cells. Autoreactive immune T-cells, which attack the body’s own tissues, have been regarded as the primary mediator of MS; however, this view has been challenged by the effectiveness of therapies targeting immune B-cells that contain the CD20 cell surface protein in reducing disease activity. One such therapy is Genentech’s Ocrevus, an anti-CD20 monoclonal antibody, which was first approved in the U.S. in 2017 for patients with relapsing MS or PPMS. Because CD20 is mainly expressed by B-cell precursors and mature B-cells, Ocrevus is often considered to selectively deplete CD20-containing B-cells. However, CD20 is also expressed by highly activated T-cells with the CD3 protein marker, characterized by the increased production of proinflammatory molecules, or cytokines. These T-cells are found in the blood, cerebrospinal fluid — the liquid surrounding the brain and spinal cord — and chronic brain lesions of MS patients, and show an elevated expression of the CD8 and CD45 markers. Off-label use of rituximab (marketed as Rituxan in the U.S. and MabThera in Europe), a lymphoma and rheumatoid arthritis treatment that also targets CD20, has been associated with the depletion of CD20-containing T-cells in MS patients. Therefore, targeting this T-cell subtype has been hypothesized as an additional mechanism for rituximab’s clinical effectiveness. However, scientists did not know whether Ocrevus, which is different from rituximab in terms of CD20 binding and cell toxicity, also depletes CD20-positive T-cells. To address this unknown, a team from Hannover Medical School in Germany analyzed blood samples of MS patients through a technique called multicolor flow cytometry prior to the first dose of Ocrevus and after two weeks, immediately before the second dose. They intended to evaluate the characteristics of the patients’ peripheral blood mononuclear cells, which include T-cells, B-cells, monocytes, and macrophages. A total of 21 patients (13 women) were included, with a median age of 43 years (range 22-65 years). Of the participants, 17 had the relapsing form of the disease for a median of 14.6 years, while four had PPMS for a median of 5.6 years. The analysis found T-cells containing CD20 and CD3 in all patients. These cells accounted for 2.4% of all CD45-expressing lymphocytes — white blood cells that include T- and B-cells — and for a significant proportion (18.4%) of all CD20 cells. Evaluation of the cells’ fluorescence intensity revealed that CD20 levels were significantly lower on T-cells than on B-cells also expressing this marker. Treatment with one dose of Ocrevus substantially lowered the levels of CD20-positive T- and B-cells within two weeks, reflected by a frequency of 0.04% and an absolute cell count decrease from 224.9 to 0.57/microliter. “Our results demonstrate that treatment with [Ocrevus] does not exclusively target B-cells, but also CD20+ T-cells, which account for a substantial amount of CD20-expressing cells,” the researchers wrote. “These findings suggest that CD20+ T-cells might play a pivotal role in the pathogenesis of MS, and we speculate that depletion of CD3+CD20+ cells by anti-CD20 monoclonal antibodies might contribute to the efficacy of anti-CD20 therapy,” they added. However, they also emphasized that the findings need to be confirmed in studies with larger groups of MS patients.

Treating a common animal model of multiple sclerosis (MS) with a typhoid vaccine eased disease symptoms by prompting T helper cells to stop production of a pro-inflammatory factor — interleukin (IL)-17 — and by promoting greater numbers of anti-inflammatory  regulatory T-cells, researchers report. Their study, “Targeting prohibitins at the…

Australia was one of the first countries to approve the use of Mavenclad (cladribine tablets, 10 mg) to treat patients with highly active relapsing-remitting multiple sclerosis (RRMS). Now, the country’s government has taken another step to ensure this 20-day course treatment is available to the largest number possible of people affected by the disease. Australia’s Prime Minister, Hon. Scott Morrison MP, announced that Merck KGaA’s therapy was included on the Pharmaceutical Benefits Scheme (PBS) listing effective Jan. 1. This will make Mavenclad affordable for about 6,200 patients each year who are already accessing PBS-subsidized medicines for MS. (Of note, Merck KGaA is known as EMD Serono in the U.S. and Canada.) This was made possible by the joint effort of MS Australia, MS Research Australia, clinicians and members of the MS community who, after successive submissions, achieved a positive recommendation by the Pharmaceutical Benefits Advisory Committee (PBAC) to list Mavenclad on PBS as a treatment for RRMS. Australia's government will cover almost all costs of Mavenclad, which will mean that patients will have to pay only $40.30 per prescription, or $6.50 for concessional patients. “Thanks to our strong economic management, we’ve ensured that every new, essential medicine recommended for listing by the Pharmaceutical Benefits Advisory Committee receives government subsidy to make it affordable for all Australians,” the Prime Minister said in a press release. Mavenclad was developed to target immune T- and B-cells that trigger relapsing MS without suppressing the entire immune system. To be taken for a maximum of 20 days over two years, the oral drug has shown it helps MS patients remain relapse-free for up to four years, while supporting the “reset” of the immune system. Australia's regulatory agency decided to approve Mavenclad based on the findings of a number of clinical trials, including the Phase 3 CLARITY (NCT00213135), CLARITY EXTENSION (NCT00641537), and ORACLE-MS (NCT00725985) studies, as well as the Phase 2 trial ONWARD study (NCT00436826), and the long-term PREMIERE (NCT01013350) trials. These clinical studies involved more than 2,700 RRMS patients, some of whom were followed for more than 10 years. Overall, the trials showed that Mavenclad significantly reduced relapse rates, disability progression, and brain atrophy. Doctors recommend the therapy for patients who failed to respond to, or are unable to tolerate, other MS treatments.

Exercise and multiple sclerosis are a natural pair and shown by research to be an important part of our MS care plan. We all can benefit from getting an assessment by a professional therapist and having an exercise plan customized for our MS, but accessing exercise in a…